Is it Possible to Re-Educate Roberta? Expert-Driven Machine Learning for Punctuation Correction

Author:

Machura Jakub1,Žižková Hana1,Frémund Adam2,Švec Jan2

Affiliation:

1. 1 Department of Czech Language, Faculty of Arts , Masaryk University , Brno , Czech Republic

2. 2 Department of Cybernetics, Faculty of Applied Sciences , University of West Bohemia , Pilsen , Czech Republic

Abstract

Abstract Although Czech rule-based tools for automatic punctuation insertion rely on extensive grammar and achieve respectable precision, the pre-trained Transformers outperform rule-based systems in precision and recall (Machura et al. 2022). The Czech pre-trained RoBERTa model achieves excellent results, yet a certain level of phenomena is ignored, and the model partially makes errors. This paper aims to investigate whether it is possible to retrain the RoBERTa language model to increase the number of sentence commas the model correctly detects. We have chosen a very specific and narrow type of sentence comma, namely the sentence comma delimiting vocative phrases, which is clearly defined in the grammar and is very often omitted by writers. The chosen approaches were further tested and evaluated on different types of texts.

Publisher

Walter de Gruyter GmbH

Subject

Linguistics and Language,Language and Linguistics,Linguistics and Language,Language and Linguistics

Reference14 articles.

1. Benko, V. (2015). Araneum Bohemicum Maius, verze 15.04. Ústav Českého národního korpusu FF UK, Praha 2015. Accessible at: http://www.korpus.cz.

2. Devlin, J. et al. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv. /abs/1810.04805 Accessible at: https://doi.org/10.48550/ar-Xiv.1810.04805.

3. Chordia, V. (2021). PunKtuator: A multilingual punctuation restoration system for spoken and written text. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations. pages 312–320. Association for Computational Linguistics. Accessible at: https://doi.org/10.18653/v1/2021.eacl-demos.37.

4. Internet Language Reference Book. (2008–2023). Praha: Ústav pro jazyk český AV ČR. Accessible at: https://prirucka.ujc.cas.cz/.

5. Karlík, P. (2017). Vokativ. In M. Nekula et al. (eds.): Nový encyklopedický slovník češtiny. Accessible at: https://www.czechency.org/slovnik/search?action=listpub&search=vokativ.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3