1. Boroş, T., Dumitrescu, S. D., and Burtica, R. (2018). NLP-Cube: End-to-end raw text processing with neural networks. In Proc. of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, Brussels, Belgium, pages 171–179. Accessible at: https://aclanthology.org/K18-2017.pdf.
2. Colic, N., and Rinaldi, F. (2019). Improving spaCy dependency annotation and PoS tagging web service using independent NER services. Genomics Inform., 17(2) e21. Accessible at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6808626/.
3. Devlin, J., Chang, M. W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proc. of NAACL HLT, Minneapolis, Minnesota, pages 4171–4186. Accessible at: https://aclanthology.org/N19-1423.pdf.
4. Erjavec, T. (2012). MULTEXT-East: morphosyntactic resources for Central and Eastern European languages Language Resources and Evaluation, 46(1), pages 131–142. Accessible at: https://www.jstor.org/stable/41486069.
5. Gajdošová, K., Šimková, M. et al. (2016). Slovak dependency treebank. LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University. Accessible at: https://lindat.cz/repository/xmlui/handle/11234/1-1822.