Slovak Language Models for Basic Preprocessing Tasks in Python

Author:

Hládek Daniel1,Harahus Maroš1,Staš Ján1,Pleva Matúš1

Affiliation:

1. 1 Faculty of Electrical Engineering and Informatics , Technical University , Košice , Slovakia

Abstract

Abstract We propose a Slovak language model for the spaCy library in Python. These models are easy-to-use for basic natural language processing tasks in a single package. The package contains several components for basic preprocessing tasks, such as tokenization, sentence boundary detection, syntactic parsing, lemmatization, named entity recognition, morphology analysis, and word vectors. It is based on the state-of-the-art monolingual SlovakBERT model. Named entity recognition is trained on a separate, publicly available WikiAnn database. The other statistical classifiers use a Slovak Dependency Treebank corpus. Morphological tags are compatible with the conventions of the Slovak National Corpus. The part of speech tags use conventions of the Universal Dependencies framework. We trained a separate word vector model on a web-based corpus. The training uses fastText with Floret modification. We present a series of experiments that confirm that the model performs similarly to other languages for all tasks. Training scripts and data are publicly available.

Publisher

Walter de Gruyter GmbH

Subject

Linguistics and Language,Language and Linguistics,Linguistics and Language,Language and Linguistics

Reference18 articles.

1. Boroş, T., Dumitrescu, S. D., and Burtica, R. (2018). NLP-Cube: End-to-end raw text processing with neural networks. In Proc. of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, Brussels, Belgium, pages 171–179. Accessible at: https://aclanthology.org/K18-2017.pdf.

2. Colic, N., and Rinaldi, F. (2019). Improving spaCy dependency annotation and PoS tagging web service using independent NER services. Genomics Inform., 17(2) e21. Accessible at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6808626/.

3. Devlin, J., Chang, M. W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proc. of NAACL HLT, Minneapolis, Minnesota, pages 4171–4186. Accessible at: https://aclanthology.org/N19-1423.pdf.

4. Erjavec, T. (2012). MULTEXT-East: morphosyntactic resources for Central and Eastern European languages Language Resources and Evaluation, 46(1), pages 131–142. Accessible at: https://www.jstor.org/stable/41486069.

5. Gajdošová, K., Šimková, M. et al. (2016). Slovak dependency treebank. LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University. Accessible at: https://lindat.cz/repository/xmlui/handle/11234/1-1822.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3