Affiliation:
1. Transport and Telecommunication Institute Riga , Latvia , Lomonosova str. 1
Abstract
Abstract
The research is related to machine learning and deep learning (ML/DL) methods for clustering and classification that are compatible with anomaly detection (network attacks detection) in digital forensics. Research is conducted in the field of selecting subsets of features of a dataset useful for constructing a good predictor (classifier). In this study, a new feature selection method for a classifier based on the Analytical Hierarchy Process (AHP) method is presented and tested. The proposed step-by-step algorithm for the iterative selection of these features makes it possible to obtain the minimum required list of features that are associated with attack events and can be used to detect them. For the classification, Artificial Neural Network (ANN) method is used. The accuracy of attack detection by the proposed method has been verified in numerical experiments.
Subject
Computer Science Applications,General Engineering
Reference28 articles.
1. 1. Ahmed, M., Mahmood, A.N. and Hu, J. (2016) A survey of network anomaly detection techniques. Journal of Network and Computer Applications, 60, 19–31.10.1016/j.jnca.2015.11.016
2. 2. Ahmad, B., Jian, W. and Ali, Z.A. (2018) Role of Machine Learning and Data Mining in Internet Security: Standing State with Future Directions. Journal of Computer Networks and Communications, Volume 2018, Article ID 6383145, Open access. DOI: 10.1155/2018/6383145.10.1155/2018/6383145
3. 3. Azevedo, G. (2022) Feature selection techniques for classification and Python tips for their application. In: Towards Data Science WEB site, https://towardsdatascience.com/feature-selection-techniques-for-classification-and-python-tips-for-their-application-10c0ddd7918b, [Accessed 04/02/2022].
4. 4. Binbusayyis, A., Vaiyapuri, T. (2019) Identifying and Benchmarking Key Features for Cyber Intrusion Detection: An Ensemble Approach. In: IEEE Access, July 2019, DOI: 10.1109/ACCESS.2019.2929487.10.1109/ACCESS.2019.2929487
5. 5. Brownlee, J. (2022) How to Choose a Feature Selection Method For Machine Learning. In: Machine Learning Mastery WEB site, https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/, [Accessed: 04/02/2022].
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献