Dynamic Traveling Route Planning Method for Intelligent Transportation Using Incremental Learning-Based Hybrid Deep Learning Prediction Model with Fine-Tuning

Author:

Kamble Shridevi Jeevan1,Kounte Manjunath R.1

Affiliation:

1. School of ECE , REVA University Bangalore , India

Abstract

Abstract Predicting the most favorable traveling routes for Vehicles plays an influential role in Intelligent Transportation Systems (ITS). Shortest Traveling Routes with high congestion grievously affect the driving comfort level of VANET users in populated cities. As a result, increase in journey time and traveling cost. Predicting the most favorable traveling routes with less congestion is imperative to minimize the driving inconveniences. A major downside of existing traveling route prediction models is to continuously learn the real-time road congestion data with static benchmarking datasets. However, learning the new information with already learned data is a cumbersome task. The main idea of this paper is to utilize incremental learning on the Hybrid Learning-based traffic Congestion and Timing Prediction (HL-CTP) to select realistic, congestion-free, and shortest traveling routes for the vehicles. The proposed HL-CTP model is decomposed into three steps: dataset construction, incremental and hybrid prediction model, and route selection. Firstly, the HL-CTP constructs a novel Traffic and Timing Dataset (TTD) using historical traffic congestion information. The incremental learning method updates the novel real-time data continuously with the TDD during prediction to optimize the performance efficiency of the hybrid prediction model closer to real-time. Secondly, the hybrid prediction model with various deep learning models performs better by taking the route prediction decision based on the best sub-predictor results. Finally, the HL-CTP selects the most favorable vehicle routes selected using traffic congestion, timing, and uncertain environmental information and enhances the comfort level of VANET users. In the simulation, the proposed HL-CTP demonstrates superior performance in terms of Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE).

Publisher

Walter de Gruyter GmbH

Subject

Computer Science Applications,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrating singular value decomposition with deep learning for enhanced travel time estimation in multimodal freight transportation networks;Expert Systems;2024-03-21

2. Design of IoT based Automatic Number Plate Recognition;2023 IEEE Technology & Engineering Management Conference - Asia Pacific (TEMSCON-ASPAC);2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3