A Topic Detection Method Based on Word-attention Networks

Author:

Xie Zheng1

Affiliation:

1. College of Liberal Arts and Sciences , National University of Defense Technology , Changsha , China

Abstract

Abstract Purpose We proposed a method to represent scientific papers by a complex network, which combines the approaches of neural and complex networks. Design/methodology/approach Its novelty is representing a paper by a word branch, which carries the sequential structure of words in sentences. The branches are generated by the attention mechanism in deep learning models. We connected those branches at the positions of their common words to generate networks, called word-attention networks, and then detect their communities, defined as topics. Findings Those detected topics can carry the sequential structure of words in sentences, represent the intra- and inter-sentential dependencies among words, and reveal the roles of words playing in them by network indexes. Research limitations The parameter setting of our method may depend on practical data. Thus it needs human experience to find proper settings. Practical implications Our method is applied to the papers of the PNAS, where the discipline designations provided by authors are used as the golden labels of papers’ topics. Originality/value This empirical study shows that the proposed method outperforms the Latent Dirichlet Allocation and is more stable.

Publisher

Walter de Gruyter GmbH

Reference34 articles.

1. Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association rules. In Proceedings of the 20th International Conference of Very Large Data Bases. 1215, 487–499.

2. Ahn, Y.Y., Bagrow, J.P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. nature, 466(7307), 761–764.

3. Asuncion, A., Welling, M., Smyth, P., & Teh, Y.W. (2012). On smoothing and inference for topic models. UAI Press. arXiv:1205.2662.

4. Blei, D.M., Ng, A.Y., & Jordan, M.I. (2003). Latent dirichlet allocation. the Journal of machine Learning research, 3, 993–1022.

5. Blondel, V.D., Guillaume, J.L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and experiment, 2008(10), P10008.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3