Author:
Szmyd Janusz,Branny Marian,Karch Michal,Wodziak Waldemar,Jaszczur Marek,Nowak Remigiusz
Abstract
This paper presents the results of experimental and numerical investigations of air flow through the crossing of a mining longwall and ventilation gallery. The object investigated consists of airways (headings) arranged in a T-shape. Maintained for technological purposes, the cave is exposed particularly to dangerous accumulations of methane.
The laboratory model is a certain simplification of a real longwall and ventilation gallery crossing. Simplifications refer to both the object’s geometry and the air flow conditions. The aim of the research is to evaluate the accuracy with which numerical simulations model the real flow. Stereo Particle Image Velocimetry (SPIV) was used to measure all velocity vector components. Three turbulence models were tested: standard k-ε, k-ε realizable and the Reynolds Stress Model (RSM). The experimental results have been compared against the results of numerical simulations. Good agreement is achieved between all three turbulence model predictions and measurements in the inflow and outflow of the channel. Large differences between the measured and calculated velocity field occur in the cavity zone. Two models, the standard k-ε and k-ε realizable over-predict the measure value of the streamwise components of velocity. This causes the ventilation intensity to be overestimated in this domain. The RSM model underestimates the measure value of streamwise components of velocity and therefore artificially decreases the intensity of ventilation in this zone. The RSM model provides better predictions than the standard k-ε and k-ε realizable in the cavity zone.
Subject
Geochemistry and Petrology,Geotechnical Engineering and Engineering Geology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献