Analyzing and modeling thermal complaints in a commercial building in France

Author:

Kocaman Ezgi1,Kuru Merve1,Çalış Gülben1

Affiliation:

1. Ege University , Department of Civil Engineering , Bornova İzmir , Turkey

Abstract

Abstract Buildings are interactive environments in which their operations and occupants are linked. Although buildings are operated according to the standards, occupant complaints may arise when there is a mismatch between indoor environmental conditions and actual user needs. Therefore, the accuracy of thermal comfort prediction models suggested by the standards and alternative prediction models need to be investigated. This study aims at assessing the performance of the predicted mean vote (PMV) model suggested by the ISO 7730 Standard to detect occupant thermal dissatisfaction. In addition, a multivariate logistic regression model was developed to predict thermal complaints with respect to “too warm” and “too cold.” This case study was conducted in a commercial building located in Paris, France, between January 2017 and May 2018. Indoor environmental conditions were monitored via sensors and an online tool was used to collect occupant thermal complaints. A total of 53 thermal complaints were analyzed. The results showed that all the operative temperature measurements in both the heating and cooling seasons were within the thresholds suggested by the standards. The PMV method suggested that only 4% of the occupants were dissatisfied with the indoor environment whereas the actual dissatisfaction ratio was 100% under these indoor environmental conditions. In addition, the multivariate logistic regression model showed that operative temperature and season have a significant effect on thermal complaints. Furthermore, the accuracy of the developed model was 90.6%.

Publisher

Walter de Gruyter GmbH

Subject

Management of Technology and Innovation,Organizational Behavior and Human Resource Management,Strategy and Management,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3