Impact of the Regularization of Regression Models on the Results of the Mass Valuation of Real Estate

Author:

Gnat Sebastian1ORCID

Affiliation:

1. University of Szczecin , Institute of Economics and Finance , Mickiewicza 64, 71-101 Szczecin , Poland

Abstract

Abstract Research background: Mass appraisal is a process in which multiple properties are appraised simultaneously, with a uniform approach. One of the tools that can be used in this area are multiple regression models. In the valuation of real estate features are often described on an ordinal or nominal scale. Replacing them with dummy variables with an insufficient number of observations leads to multicollinearity. On the other hand, there is a risk of overfitting the model. One of the ways to eliminate or weaken these phenomena is to introduce regularization based on a model’s penalization for the high values of its weights. Purpose: The aim of the study is to verify the hypothesis whether regularized regression reduces the errors of property valuation and which of the analyzed methods is the most effective in this context. Research methodology: The article will present a study in which two ways of regularization will be applied – ridge and lasso regression, in the context of their impact on the errors of property valuation. The analyzed data set includes over 300 land properties valued by property appraisers. The key aspects of the study are the selection of optimal values of the regularization parameter and its influence on model’s errors with a different number of observations in the training sets. Results: The study showed that regularization improves valuation results and, more specifically, allows for lower average absolute percentage errors. The improvement of model effectiveness was more pronounced in the case of ridge regression. An important result is also that regularization has provided a higher accuracy of valuation compared to multiple regression models for smaller training sets. Novelty: The article confirms the effectiveness of regularization as a way to eliminate the problem of multicollinearity or overfitting of the model. The results showed that ridge regression can be an effective way of modelling the value of real estate. Especially in the case of a small amount of market data, which is an important conclusion in the context of the real estate market.

Publisher

Walter de Gruyter GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3