Identification of Outliers in High Density Areas with the Use of a Quantile Regression Model

Author:

Szkutnik Tomasz1ORCID

Affiliation:

1. University of Economics in Katowice , Faculty of Management, Department of Mathematics, Statistics and Econometrics Bogucicka 3, 40-287 Katowice , Poland

Abstract

Abstract Research background: The study exemplifies the issues presented in the international trade data, which can affect the efficiency of customs controls in clearance systems. Purpose: The purpose of the research is to find a method of identifying suspicious transactions in datasets, where the risk factor is related to the overvaluation of goods covered under export procedure and data that are affected by areas of extra high density. Research methodology: The proposed methodology is two-step. Firstly, to eliminate areas of extra high density, with the use of a sampling scheme set reciprocally to the intensity point pattern, defined by means of a two-dimensional kernel estimator. Next, based on sampled data, a quantile regression model is built. Moreover, the inference about the type of model is provided by using the Khmaladze test. Results: The example highlights the benefits of the use of the two-step approach in model building. The proposed methodology provides the foundation for the inference by means of the Khmaladze test. The reliable threshold for selecting the suspicious transactions can be built. Novelty: The paper addresses some of the previously identified issues in a two-dimensional intensity assessment. Moreover, the proposed methodology based on quantile regression and the Khmaladze test provides the foundation for the customs gap measure in export data.

Publisher

Walter de Gruyter GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3