Investigating improvements to neural network based EMG to joint torque estimation

Author:

Chandrapal Mervin,Chen XiaoQi,Wang WenHui,Stanke Benjamin,Le Pape Nicolas

Abstract

AbstractAlthough surface electromyography (sEMG) has a high correlation to muscle force, an accurate model that can estimate joint torque from sEMG is still elusive. Artificial neural networks (NN), renowned as universal approximators, have been employed to capture this complex nonlinear relation. This work focuses on investigating possible improvements to the NN methodology and algorithm that would consistently produce reliable sEMG-to-knee-joint torque mapping for any individual. This includes improvements in number of inputs, data normalization techniques, NN architecture and training algorithms. Data (sEMG) from five knee extensor and flexor muscle from one subject were recorded on 10 random days over a period of 3 weeks whilst subject performed both isometric and isokinetic movements. The results indicate that incorporating more muscles into the NN and normalizing the data at each isometric angle prior to NN training improves torque estimation. The mean lowest estimation error achieved for isometric motion was 10.461% (1.792), whereas the lowest estimation errors for isokinetic motion were larger than 20%.

Publisher

Walter de Gruyter GmbH

Subject

Behavioral Neuroscience,Artificial Intelligence,Cognitive Neuroscience,Developmental Neuroscience,Human-Computer Interaction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Real-time Kinematic-based Locomotion Mode Prediction Algorithm for an Ankle Orthosis;2024 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC);2024-05-02

2. Evaluation of generic EMG-Torque models across two Upper-Limb joints;Journal of Electromyography and Kinesiology;2024-04

3. Real-Time Torque Estimation Using Human and Sensor Data Fusion for Exoskeleton Assistance;Lecture Notes in Networks and Systems;2024

4. Human Intention Recognition for Lower Limb Exoskeleton Robot;Lecture Notes in Electrical Engineering;2023

5. Muscle synergies enable accurate joint moment prediction using few electromyography sensors*;2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2021-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3