Learning and decision-making in artificial animals

Author:

Strannegård Claes1,Svangård Nils2,Lindström David2,Bach Joscha3,Steunebrink Bas4

Affiliation:

1. Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg , Sweden

2. Department of Applied Information Technology, University of Gothenburg, Gothenburg , Sweden

3. Evolutionary Dynamics, Harvard University, Cambridge , USA

4. NNAISENSE, Lugano , Switzerland

Abstract

Abstract A computational model for artificial animals (animats) interacting with real or artificial ecosystems is presented. All animats use the same mechanisms for learning and decisionmaking. Each animat has its own set of needs and its own memory structure that undergoes continuous development and constitutes the basis for decision-making. The decision-making mechanism aims at keeping the needs of the animat as satisfied as possible for as long as possible. Reward and punishment are defined in terms of changes to the level of need satisfaction. The learning mechanisms are driven by prediction error relating to reward and punishment and are of two kinds: multi-objective local Q-learning and structural learning that alter the architecture of the memory structures by adding and removing nodes. The animat model has the following key properties: (1) autonomy: it operates in a fully automatic fashion, without any need for interaction with human engineers. In particular, it does not depend on human engineers to provide goals, tasks, or seed knowledge. Still, it can operate either with or without human interaction; (2) generality: it uses the same learning and decision-making mechanisms in all environments, e.g. desert environments and forest environments and for all animats, e.g. frog animats and bee animats; and (3) adequacy: it is able to learn basic forms of animal skills such as eating, drinking, locomotion, and navigation. Eight experiments are presented. The results obtained indicate that (i) dynamic memory structures are strictly more powerful than static; (ii) it is possible to use a fixed generic design to model basic cognitive processes of a wide range of animals and environments; and (iii) the animat framework enables a uniform and gradual approach to AGI, by successively taking on more challenging problems in the form of broader and more complex classes of environments

Publisher

Walter de Gruyter GmbH

Reference48 articles.

1. Adams, S. S., and Burbeck, S. 2012. Beyond the Octopus: From General Intelligence toward a Human-like Mind. In Theoretical Foundations of Artificial General Intelligence. Springer. 49-65.10.2991/978-94-91216-62-6_4

2. Avila-García, O., and Cañamero, L. 2005. Hormonal modulation of perception in motivation-based action selection architectures. In Procs of the Symposium on Agents that Want and Like. SSAISB.

3. Bach, J. 2009. Principles of synthetic intelligence. Oxford University Press.

4. Bach, J. 2015. Modeling motivation in MicroPsi 2. In AGI 2015 Conference Proceedings, 3-13. Springer.10.1007/978-3-319-21365-1_1

5. Bear, M. F.; Connors, B. W.; and Paradiso, M. A. 2015. Neuroscience. Wolters Kluwer.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reverse Engineering the Brain Based on Machine Learning;Advances in Neural Computation, Machine Learning, and Cognitive Research IV;2020-10-02

2. AGI Brain: A Learning and Decision Making Framework for Artificial General Intelligence Systems Based on Modern Control Theory;Artificial General Intelligence;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3