Analysis of Chromosomal Damage Caused by Acetamiprid

Author:

Stupáková K.1,Galdíková M.1,Schwarzbacherová V.1,Holečková B.1

Affiliation:

1. Department of Biology and Genetics, Institute of Genetics , University of Veterinary Medicine and Pharmacy , Komenského 73, 041 81 Košice , Slovakia

Abstract

Abstract Different chemicals can have genotoxic effects on the body, as confirmed by chromosome damage detection. Using conventional cytogenetic analysis and fluorescence in situ hybridization, we tested the extent of chromosome damage caused by the acetamiprid-based insecticide Mospilan 20SP on bovine peripheral blood lymphocytes at concentrations of, 2.5, 5, 25 and 50 µg.ml−1 after a 24 h incubation period. During the experiment, the presence of unstable aberrations—chromosomal and chromatid breaks and gaps—were detected by conventional cyto-genetic analysis. With increasing insecticide concentrations, we observed a statistically significant increase in chromosome damage frequency after 24 hours of exposure. Fluorescence in situ hybridization was used to detect stable structural aberrations; whole-chromosome painting probes for bovine chromosomes 1 and 7 (BTA 1 and BTA 7) were used for this purpose. As a result of exposure to the insecticide, neither BTA 1/BTA 7 translocations nor other types of translocations were observed.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3