High order Finite Difference/Discontinuous Galerkin schemes for the incompressible Navier-Stokes equations with implicit viscosity

Author:

Boscheri Walter1,Tavelli Maurizio2,Paoluzzi Nicola1

Affiliation:

1. Department of Mathematics and Computer Science , University of Ferrara , Ferrara , Italy

2. Faculty of Computer Science , University of Bozen , Bolzano , Italy

Abstract

Abstract In this work we propose a novel numerical method for the solution of the incompressible Navier-Stokes equations on Cartesian meshes in 3D. The semi-discrete scheme is based on an explicit discretization of the nonlinear convective flux tensor and an implicit treatment of the pressure gradient and viscous terms. In this way, the momentum equation is formally substituted into the divergence-free constraint, thus obtaining an elliptic equation on the pressure which eventually maintains at the discrete level the involution on the divergence of the velocity field imposed by the governing equations. This makes our method belonging to the class of so-called structure-preserving schemes. High order of accuracy in space is achieved using an efficient CWENO reconstruction operator that is exploited to devise a conservative finite difference scheme for the convective terms. Implicit central finite differences are used to remove the numerical dissipation in the pressure gradient discretization. To avoid the severe time step limitation induced by the viscous eigenvalues related to the parabolic terms in the governing equations, we propose to devise an implicit local discontinuous Galerkin (DG) solver. The resulting viscous sub-system is symmetric and positive definite, therefore it can be efficiently solved at the aid of a matrix-free conjugate gradient method. High order in time is granted by a semi-implicit IMEX time stepping technique. Convergence rates up to third order of accuracy in space and time are proven, and a suite of academic benchmarks is shown in order to demonstrate the robustness and the validity of the novel schemes, especially in the context of high viscosity coefficients.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Industrial and Manufacturing Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3