A new two-component approach in modeling red blood cells

Author:

Meacci Luca1,Buscaglia Gustavo C.1,Mut Fernando2,Ausas Roberto F.1,Primicerio Mario34

Affiliation:

1. Instituto de Ciências Matemáticas e de Computação , ICMC, Universidade de São Paulo , São Carlos (SP), Brazil

2. Bioengineering Department , George Mason University , Fairfax (VA), USA

3. Dipartimento di Matematica “U. Dini” , Università degli Studi di Firenze , Firenze , Italy

4. Istituto per le Applicazioni del Calcolo “M. Picone” , CNR, Roma , Italy

Abstract

Abstract This work consists in the presentation of a computational modelling approach to study normal and pathological behavior of red blood cells in slow transient processes that can not be accompanied by pure particle methods (which require very small time steps). The basic model, inspired by the best models currently available, considers the cytoskeleton as a discrete non-linear elastic structure. The novelty of the proposed work is to couple this skeleton with continuum models instead of the more common discrete models (molecular dynamics, particle methods) of the lipid bilayer. The interaction of the solid cytoskeleton with the bilayer, which is a two-dimensional fluid, will be done through adhesion forces adapting e cient solid-solid adhesion algorithms. The continuous treatment of the fluid parts is well justified by scale arguments and leads to much more stable and precise numerical problems when, as is the case, the size of the molecules (0.3 nm) is much smaller than the overall size (≃ 8000 nm). In this paper we display some numerical simulations that show how our approach can describe the interaction of an RBC with an exogenous body as well as the relaxation of the shape of an RBC toward its equilibrium configuration in absence of external forces.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3