Continuous limits of residual neural networks in case of large input data

Author:

Herty Michael1,Thünen Anna2,Trimborn Torsten3,Visconti Giuseppe4

Affiliation:

1. Institut für Geometrie und Praktische Mathematik (IGPM) – RWTH Aachen University – Templergraben 55, 52062 Aachen ( Germany )

2. Institut für Mathematik – TU Clausthal – Erzstraße 1 , 38678 Clausthal-Zellerfeld ( Germany )

3. NRW.BANK – Kavalleriestraße 22 , 40213 Düsseldorf ( Germany )

4. Department of Mathematics “G. Castelnuovo” – Sapienza University of Rome – P.le Aldo Moro 5, 00185 Roma ( Italy )

Abstract

Abstract Residual deep neural networks (ResNets) are mathematically described as interacting particle systems. In the case of infinitely many layers the ResNet leads to a system of coupled system of ordinary differential equations known as neural differential equations. For large scale input data we derive a mean–field limit and show well–posedness of the resulting description. Further, we analyze the existence of solutions to the training process by using both a controllability and an optimal control point of view. Numerical investigations based on the solution of a formal optimality system illustrate the theoretical findings.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3