Forced degradation of tacrolimus and the development of a UHPLC method for impurities determination

Author:

Peterka Tanja Rozman1,Lušin Tina Trdan1,Bergles Jure1,Ham Zoran1,Grahek Rok1,Urleb Uroš1

Affiliation:

1. Lek Pharmaceticals d.d. SI-1526 Ljubljana , Slovenia

Abstract

Abstract An ultra-high performance liquid chromatography method for simultaneous determination of tacrolimus impurities in pharmaceutical dosage forms has been developed. Appropriate chromatographic separation was achieved on a BEH C18 column using gradient elution with a total run time of 14 min. The method was applied to analyses of commercial samples and was validated in terms of linearity, precision, accuracy, sensitivity and specificity. It was found to be linear, precise and accurate in the range of 0.05 to 0.6 % of the impurities level in pharmaceutical dosage forms. Stability indicating power of the method was demonstrated by the results of forced degradation studies. The forced degradation study in solution revealed tacrolimus instability under stress alkaline, thermal, light and photolytic conditions and in the presence of a radical initiator or metal ions. The drug was stable at pH 3–5. Solid-state degradation studies conducted on amorphous tacrolimus demonstrated its sensitivity to light, elevated temperature, humidity and oxidation.

Publisher

Walter de Gruyter GmbH

Subject

Pharmaceutical Science,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3