Affiliation:
1. 1 Victoria University , 1 College of Engineering & Science, Department of Mathematics , Balarat Road, Melbourne City, MC 8001 , Australia .
Abstract
Abstract
For a continuous and positive function w (λ), λ > 0 and µ a positive measure on (0,
∞
) we consider the following integral transform
𝒟
(
w
,
μ
)
(
T
)
:
=
∫
0
∞
w
(
λ
)
(
λ
+
T
)
−
1
d
μ
(
λ
)
,
\mathcal{D}\left( {w,\mu } \right)\left( T \right): = \int_0^\infty {w\left( \lambda \right){{\left( {\lambda + T} \right)}^{ - 1}}d\mu \left( \lambda \right)} ,
where the integral is assumed to exist for T a positive operator on a complex Hilbert space H.
We show among others that, if B, A > 0, then
[
𝒟
(
w
,
μ
)
(
A
)
−
𝒟
(
w
,
μ
)
(
B
)
]
(
B
−
A
)
=
∫
0
∞
w
(
λ
)
(
∫
0
1
[
λ
+
(
1
−
t
)
B
+
t
A
)
−
1
(
B
−
A
)
]
2
d
t
)
d
μ
(
λ
)
.
\matrix{{\left[{\mathcal{D}\left({w,\mu}\right)\left(A\right)-\mathcal{D}\left({w,\mu}\right)\left(B\right)}\right]\left({B-A}\right)}\cr{=\int_0^\infty{w\left(\lambda\right)\left({\int_0^1{{{\left[{\lambda+\left({1-t}\right)B+tA{)^{-1}}\left({B-A}\right)}\right]}^2}dt}}\right)d\mu\left(\lambda\right).}}\cr}
We also provide some sufficient conditions for the operators A, B > 0 such that the inequality
𝒟
(
w
,
μ
)
(
A
)
B
+
𝒟
(
w
,
μ
)
(
B
)
A
≥
A
𝒟
(
w
,
μ
)
(
A
)
+
B
𝒟
(
w
,
μ
)
(
B
)
\mathcal{D}\left({w,\mu}\right)\left(A\right)B+\mathcal{D}\left({w,\mu}\right)\left(B\right)A{\ge}A\mathcal{D}\left({w,\mu}\right)\left(A\right)+B\mathcal{D}\left({w,\mu}\right)\left(B\right)
holds. Some examples for power and logarithmic functions are also provided.
Reference12 articles.
1. R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, 169. Springer-Verlag, New York, 1997. xii+347 pp. ISBN: 0-387-94846-5.
2. M. Fujii, R. Nakamoto, Note on Dragomir’s theorems, Private note, 5 Aug. 2020, Preprint RGMIA Res. Rep. Coll., Art. 113, vol. 23, 2020, 4 pp.
3. J. I. Fujii, Y. Seo, On parametrized operator means dominated by power ones, Sci. Math., vol. 1, 1998, 301-306.
4. T. Furuta, Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation, Linear Algebra Appl., vol. 429, 2008, 972-980.
5. T. Furuta, Precise lower bound of f(A)−f(B) for A > B > 0 and non-constant operator monotone function f on [0, ∞), J. Math. Inequal., vol. 9, no. 1, 2015, 47-52.