Antidiabetic, antioxidant and in silico studies of bacterial endosymbiont inhabiting Nephelium lappaceum L.

Author:

Chigurupati Sridevi1,Vijayabalan Shantini2,Karunanidhi Arunkumar3,Krishnan Selvarajan Kesavanarayanan4,Nanda Sitansu Sekhar5,Satpathy Raghunath6

Affiliation:

1. Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy , Qassim University , Buraidah 52571 , Kingdom of Saudi Arabia

2. Department of Pharmaceutical Chemistry, Faculty of Pharmacy , AIMST University , Kedah, Malaysia

3. Department of Pharmacology and Chemistry, Faculty of Pharmacy , Universiti Teknologi MARA , 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia

4. Department of Pharmacology & Toxicology, College of Pharmacy , University of Hail , Hail , Kingdom of Saudi Arabia

5. Department of Chemistry , Myongji University , Yongin , South Korea

6. Department of Biotechnology , MITS Engineering College , Rayagada , Odisha- 765017 , India

Abstract

Abstract Endophytes, notably obtaining attention, have been abided by potential origins of bioactive metabolites. In the acquaint study, endophyte was isolated from the leaves of Nephelium lappaceum L. The chosen endosymbiont was identified by 16s rRNA partial genome sequencing and investigated for their antioxidant and antidiabetic activities. A preliminary phytochemical test was comported for the affirmation of phytoconstituents in endophytic crude extract (NLM). Antioxidant activities were conducted by using 2-diphenyl-1-picrylhydrazyl (DPPH) method and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) method to screen the radical scavenging potential. The evaluation of antidiabetic activities was done by using α-amylase and α-glucosidase inhibition assay. Qualitative phytochemical test on NLM affirmed the presence of phenols, carbohydrates, alkaloids, flavonoids, steroids, mucilage and glycosides. In silico parameters were also specified for antidiabetic activities. The antioxidant assay of NLM expressed proficient antioxidant activity of IC50±SEM 1.35±0.03 µg/mL and IC50±SEM 1.47±0.03 µg/mL, for ABTS and DPPH respectively. Antidiabetic assay results evidenced dose dependent percentage inhibition of the enzyme. The results testified estimable inhibition of α-amylase (IC50±SEM 2.549±0.08 µg/mL) and α-glucosidase inhibition (IC50±SEM 2.29±0.03µg/mL) compared to the standard drug (Acarbose). In silico study divulged that the ellagic acid component present in the plant was responsible for antidiabetic activity. Thus, the study shows that NLM has a wellspring of natural source of antioxidants and antidiabetic agents and furtherance of studies on its mechanism is recommended to know detailed facts.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3