Effect of two-stage thermal disintegration on particle size distribution in sewage sludge

Author:

Karczmarek Anna M.1,Gaca Jerzy1

Affiliation:

1. University of Technology and Life Sciences in Bydgoszcz, Faculty of Technology and Chemical Engineering, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland

Abstract

Abstract The effect of two-stage thermal disintegration of sewage sludge on the particle size distribution using laser diffraction method has been studied. The sludge was sampled from municipal sewage treatment plant after each stage of disintegration. The first stage of disintegration known as homogenization proceeds at temperature of 70-90°C and pressure of 3 bar, the second stage called thermal hydrolysis was performed at temperature of 160-170°C and pressure of 6 bar. It was found that the first stage of disintegration has the strongest impact on the reduction of the sludge particle size and changes in chemical properties. The maximum size of the particles from raw sewage before disintegration was 310 μm. After first stage of the process average size of the particles was 250 μm, and during the second stage it was reduced to 226 μm. Sludge disintegration degree (DDCOD) of 59% confirms high effectiveness of the process. We established that the redox potential (Eh) of sludge effluents was changed after each step of the studied process. Furthermore, chemical oxygen demand (COD) increases which leads to the conclusion that resizing of floccules is accompanied by hydrolysis.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3