A planning model for the chemical integrated system under uncertainty by grey programming approach

Author:

Ren Jingzheng,Tan Shiyu,Dong Lichun,Zhou Zhiming,Gao Suzhao,Pan Cihui

Abstract

A model to optimize the planning of the chemical integrated system comprised by multi-devices and multi-products has been proposed in this paper. With the objective to make more profits, the traditional model for optimizing production planning has been proposed. The price of chemicals, the market demand, and the production capacity have been considered as mutative variables, then an improved model in which some parameters are not constant has been developed and a new method to solve the grey linear programming has been proposed. In the grey programming model, the value of credibility can be suggested by the decision-makers, and the results of the production planning calculated by the model can help them to achieve their desired target. An actual case has been studied by the proposed methodology, and the proposed methodology can be popularized to other cases.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry,Biotechnology

Reference58 articles.

1. Study on Application of Multi - plant Production Planning Optimization Model Technology in in Chinese;Lu;Economics,2008

2. On the Algorithm of Grey Multiple Objective Programming in Chinese;Luo;Systems Engineering,2004

3. simple duality proof in convex quadratic programming with a quadratic constraint and some applications;Pinar;European Journal of Operational Research,2000

4. grey fuzzy multiobjective programming approach for the optimal planning of a reservoir watershed Part Theoretical;Chang;Development Water Research,1996

5. Towards a national circular economy indicator system in China : an evaluation and critical analysis of;Geng;Journal Cleaner Production,2012

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3