A modified nanoporous stir bar for simultaneous determination of Cu(II) and Cd(II) ions in natural samples prior to flame atomic absorption spectroscopy

Author:

Karimi Mohammad,Aboufazeli Forouzan,Zadeh Zhad Hamid Reza Lotfi,Sadeghi Omid,Najafi Ezzatollah

Abstract

In this work, the application of stir bar sorptive extraction (SBSE), as a fast and conventional method, has been investigated for the simultaneous preconcentration and determination of trace amounts of Cd(II) and Cu(II) ions in natural samples. For this purpose, the surface of stir bar was functionalized by amine functionalized nanoporous silica and characterized by IR spectroscopy, X-ray powder diffraction (XRD), Atomic force microscopy (AFM) and N2adsorption. In this approach, after the preconcentration of Cd(II) and Cu(II) ions and removing the matrix interferences using modified stir bar, the amounts of these ions were determined in eluent by flame atomic absorption spectroscopy (FAAS). Various parameters on adsorption and elution steps including pH of sample, adsorption kinetic, eluent parameters (type, volume and concentration) and elution time, have been optimized in this study. The limits of detection (LOD) were 1.6 and 13.8 ng mL-1(recovery of 83.5 and 88.1%) for cadmium and copper ions, respectively. The preconcentration factors were 133 and 137 and the relative standard deviations (RSD) of the method were 5.7 and 4.6% for Cd(II) and Cu(II) ions, respectively. As the key point in this study seems to be stir bar nanoporous structure, the analytical performance of this stir bar was compared to non-porous ones. The accuracy of this novel method has been confirmed using some standard references materials. Finally the potential of this method was investigated by determination of Cd(II) and Cu(II) ions in some real samples with complicated matrixes.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3