Global Collaboration in Artificial Intelligence: Bibliometrics and Network Analysis from 1985 to 2019

Author:

Hu Haotian12,Wang Dongbo3,Deng Sanhong12

Affiliation:

1. School of Information Management , Nanjing University , Nanjing , China

2. Jiangsu Key Laboratory of Data Engineering and Knowledge Service , Nanjing , China

3. College of Information and Technology , Nanjing Agricultural University , Nanjing , China

Abstract

Abstract Purpose This study aims to explore the trend and status of international collaboration in the field of artificial intelligence (AI) and to understand the hot topics, core groups, and major collaboration patterns in global AI research. Design/methodology/approach We selected 38,224 papers in the field of AI from 1985 to 2019 in the core collection database of Web of Science (WoS) and studied international collaboration from the perspectives of authors, institutions, and countries through bibliometric analysis and social network analysis. Findings The bibliometric results show that in the field of AI, the number of published papers is increasing every year, and 84.8% of them are cooperative papers. Collaboration with more than three authors, collaboration between two countries and collaboration within institutions are the three main levels of collaboration patterns. Through social network analysis, this study found that the US, the UK, France, and Spain led global collaboration research in the field of AI at the country level, while Vietnam, Saudi Arabia, and United Arab Emirates had a high degree of international participation. Collaboration at the institution level reflects obvious regional and economic characteristics. There are the Developing Countries Institution Collaboration Group led by Iran, China, and Vietnam, as well as the Developed Countries Institution Collaboration Group led by the US, Canada, the UK. Also, the Chinese Academy of Sciences (China) plays an important, pivotal role in connecting the these institutional collaboration groups. Research limitations First, participant contributions in international collaboration may have varied, but in our research they are viewed equally when building collaboration networks. Second, although the edge weight in the collaboration network is considered, it is only used to help reduce the network and does not reflect the strength of collaboration. Practical implications The findings fill the current shortage of research on international collaboration in AI. They will help inform scientists and policy makers about the future of AI research. Originality/value This work is the longest to date regarding international collaboration in the field of AI. This research explores the evolution, future trends, and major collaboration patterns of international collaboration in the field of AI over the past 35 years. It also reveals the leading countries, core groups, and characteristics of collaboration in the field of AI.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3