Build neural network models to identify and correct news headlines exaggerating obesity-related scientific findings

Author:

An Ruopeng1ORCID,Batcheller Quinlan1,Wang Junjie2,Yang Yuyi1

Affiliation:

1. 1 Brown School, Washington University in St. Louis , One Brookings Drive, St. Louis , Missouri , United States

2. 2 Department of kinesiology and health promotion, Dalian University of Technology , No.2 Linggong Road , Dalian , China

Abstract

Abstract Purpose Media exaggerations of health research may confuse readers’ understanding, erode public trust in science and medicine, and cause disease mismanagement. This study built artificial intelligence (AI) models to automatically identify and correct news headlines exaggerating obesity-related research findings. Design/methodology/approach We searched popular digital media outlets to collect 523 headlines exaggerating obesity-related research findings. The reasons for exaggerations include: inferring causality from observational studies, inferring human outcomes from animal research, inferring distant/end outcomes (e.g., obesity) from immediate/intermediate outcomes (e.g., calorie intake), and generalizing findings to the population from a subgroup or convenience sample. Each headline was paired with the title and abstract of the peer-reviewed journal publication covered by the news article. We drafted an exaggeration-free counterpart for each original headline and fined-tuned a BERT model to differentiate between them. We further fine-tuned three generative language models—BART, PEGASUS, and T5 to autogenerate exaggeration-free headlines based on a journal publication’s title and abstract. Model performance was evaluated using the ROUGE metrics by comparing model-generated headlines with journal publication titles. Findings The fine-tuned BERT model achieved 92.5% accuracy in differentiating between exaggeration-free and original headlines. Baseline ROUGE scores averaged 0.311 for ROUGE-1, 0.113 for ROUGE-2, 0.253 for ROUGE-L, and 0.253 ROUGE-Lsum. PEGASUS, T5, and BART all outperformed the baseline. The best-performing BART model attained 0.447 for ROUGE-1, 0.221 for ROUGE-2, 0.402 for ROUGE-L, and 0.402 for ROUGE-Lsum. Originality/value This study demonstrated the feasibility of leveraging AI to automatically identify and correct news headlines exaggerating obesity-related research findings.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3