A Use Case of Patent Classification Using Deep Learning with Transfer Learning

Author:

Henriques Roberto1,Ferreira Adria1,Castelli Mauro1

Affiliation:

1. Campus de Campolide , Lisboa , Portugal

Abstract

Abstract Purpose Patent classification is one of the areas in Intellectual Property Analytics (IPA), and a growing use case since the number of patent applications has been increasing worldwide. We propose using machine learning algorithms to classify Portuguese patents and evaluate the performance of transfer learning methodologies to solve this task. Design/methodology/approach We applied three different approaches in this paper. First, we used a dataset available by INPI to explore traditional machine learning algorithms and ensemble methods. After preprocessing data by applying TF-IDF, FastText and Doc2Vec, the models were evaluated by cross-validation in 5 folds. In a second approach, we used two different Neural Networks architectures, a Convolutional Neural Network (CNN) and a bi-directional Long Short-Term Memory (BiLSTM). Finally, we used pre-trained BERT, DistilBERT, and ULMFiT models in the third approach. Findings BERTTimbau, a BERT architecture model pre-trained on a large Portuguese corpus, presented the best results for the task, even though with a performance of only 4% superior to a LinearSVC model using TF-IDF feature engineering. Research limitations The dataset was highly imbalanced, as usual in patent applications, so the classes with the lowest samples were expected to present the worst performance. That result happened in some cases, especially in classes with less than 60 training samples. Practical implications Patent classification is challenging because of the hierarchical classification system, the context overlap, and the underrepresentation of the classes. However, the final model presented an acceptable performance given the size of the dataset and the task complexity. This model can support the decision and improve the time by proposing a category in the second level of ICP, which is one of the critical phases of the grant patent process. Originality/value To our knowledge, the proposed models were never implemented for Portuguese patent classification.

Publisher

Walter de Gruyter GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning-based method to cluster a converging technology system: The case of printed electronics;World Patent Information;2024-09

2. An Innovation Analysis of Semantic Text Classification Using Deep Belief Networks;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

3. Extraction and linking of motivation, specification and structure of inventions for early design use;Journal of Engineering Design;2023-06-03

4. Patent Classification Using BERT-for-Patents on USPTO;Proceedings of the 2022 5th International Conference on Machine Learning and Natural Language Processing;2022-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3