Dimensionality reduction model based on integer planning for the analysis of key indicators affecting life expectancy

Author:

Cui Wei1,Xu Zhiqiang1,Mu Ren1

Affiliation:

1. School of Statistics, Jilin University of Finance and Economics , Changchun, Jilin , China

Abstract

Abstract Purpose Exploring a dimensionality reduction model that can adeptly eliminate outliers and select the appropriate number of clusters is of profound theoretical and practical importance. Additionally, the interpretability of these models presents a persistent challenge. Design/methodology/approach This paper proposes two innovative dimensionality reduction models based on integer programming (DRMBIP). These models assess compactness through the correlation of each indicator with its class center, while separation is evaluated by the correlation between different class centers. In contrast to DRMBIP-p, the DRMBIP-v considers the threshold parameter as a variable aiming to optimally balances both compactness and separation. Findings This study, getting data from the Global Health Observatory (GHO), investigates 141 indicators that influence life expectancy. The findings reveal that DRMBIP-p effectively reduces the dimensionality of data, ensuring compactness. It also maintains compatibility with other models. Additionally, DRMBIP-v finds the optimal result, showing exceptional separation. Visualization of the results reveals that all classes have a high compactness. Research limitations The DRMBIP-p requires the input of the correlation threshold parameter, which plays a pivotal role in the effectiveness of the final dimensionality reduction results. In the DRMBIP-v, modifying the threshold parameter to variable potentially emphasizes either separation or compactness. This necessitates an artificial adjustment to the overflow component within the objective function. Practical implications The DRMBIP presented in this paper is adept at uncovering the primary geometric structures within high-dimensional indicators. Validated by life expectancy data, this paper demonstrates potential to assist data miners with the reduction of data dimensions. Originality/value To our knowledge, this is the first time that integer programming has been used to build a dimensionality reduction model with indicator filtering. It not only has applications in life expectancy, but also has obvious advantages in data mining work that requires precise class centers.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3