Performance evaluation of seven multi-label classification methods on real-world patent and publication datasets

Author:

Xu Shuo1,Zhang Yuefu1,An Xin2,Pi Sainan2

Affiliation:

1. College of Economics and Management, Beijing University of Technology , Beijing , China

2. School of Economics & Management, Beijing Forestry University , Beijing , China

Abstract

Abstract Purpose Many science, technology and innovation (STI) resources are attached with several different labels. To assign automatically the resulting labels to an interested instance, many approaches with good performance on the benchmark datasets have been proposed for multilabel classification task in the literature. Furthermore, several open-source tools implementing these approaches have also been developed. However, the characteristics of real-world multilabel patent and publication datasets are not completely in line with those of benchmark ones. Therefore, the main purpose of this paper is to evaluate comprehensively seven multi-label classification methods on real-world datasets. Design/methodology/approach Three real-world datasets (Biological-Sciences, Health-Sciences, and USPTO) from SciGraph and USPTO database are constructed. Seven multilabel classification methods with tuned parameters (dependency-LDA, MLkNN, LabelPowerset, RAkEL, TextCNN, TexRNN, and TextRCNN) are comprehensively compared on these three real-world datasets. To evaluate the performance, the study adopts three classification-based metrics: Macro-F1, Micro-F1, and Hamming Loss. Findings The TextCNN and TextRCNN models show obvious superiority on small-scale datasets with more complex hierarchical structure of labels and more balanced documentlabel distribution in terms of macro-F1, micro-F1 and Hamming Loss. The MLkNN method works better on the larger-scale dataset with more unbalanced document-label distribution. Research limitations Three real-world datasets differ in the following aspects: statement, data quality, and purposes. Additionally, open-source tools designed for multi-label classification also have intrinsic differences in their approaches for data processing and feature selection, which in turn impacts the performance of a multi-label classification approach. In the near future, we will enhance experimental precision and reinforce the validity of conclusions by employing more rigorous control over variables through introducing expanded parameter settings. Practical implications The observed Macro F1 and Micro F1 scores on real-world datasets typically fall short of those achieved on benchmark datasets, underscoring the complexity of real-world multi-label classification tasks. Approaches leveraging deep learning techniques offer promising solutions by accommodating the hierarchical relationships and interdependencies among labels. With ongoing enhancements in deep learning algorithms and large-scale models, it is expected that the efficacy of multi-label classification tasks will be significantly improved, reaching a level of practical utility in the foreseeable future. Originality/value (1) Seven multi-label classification methods are comprehensively compared on three real-world datasets. (2) The TextCNN and TextRCNN models perform better on small-scale datasets with more complex hierarchical structure of labels and more balanced document-label distribution. (3) The MLkNN method works better on the larger-scale dataset with more unbalanced document-label distribution.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3