Confidence Intervals for Relative Intensity of Collaboration (RIC) Indicators

Author:

Fuchs Joel Emanuel1,Smolinsky Lawrence2,Rousseau Ronald34ORCID

Affiliation:

1. University of Wuppertal , Gaußstr. 20 , Wuppertal , Germany

2. Louisiana State University , Department of Mathematics , Baton Rouge , Los Angeles , USA

3. University of Antwerp , Faculty of Social Sciences , Middelheimlaan 1 , Antwerp , Belgium

4. KU Leuven , Facultair Onderzoekscentrum ECOOM , Naamsestraat 61 , Leuven , Belgium

Abstract

Abstract Purpose We aim to extend our investigations related to the Relative Intensity of Collaboration (RIC) indicator, by constructing a confidence interval for the obtained values. Design/methodology/approach We use Mantel-Haenszel statistics as applied recently by Smolinsky, Klingenberg, and Marx. Findings We obtain confidence intervals for the RIC indicator Research limitations It is not obvious that data obtained from the Web of Science (or any other database) can be considered a random sample. Practical implications We explain how to calculate confidence intervals. Bibliometric indicators are more often than not presented as precise values instead of an approximation depending on the database and the time of measurement. Our approach presents a suggestion to solve this problem. Originality/value Our approach combines the statistics of binary categorical data and bibliometric studies of collaboration.

Publisher

Walter de Gruyter GmbH

Reference15 articles.

1. Agresti, A. (2019). An introduction to categorical data analysis (3rd. ed.). Hoboken (NJ, USA): Wiley.

2. Bornmann, M., & Haunschild, R. (2018). Normalization of zero-inflated data: An empirical analysis of a new indicator family and its use with altmetrics data. Journal of Informetrics, 12(3), 998–1011.

3. Clarivate (2022, July 07). Web of Science. https://www.webofscience.com/wos.

4. Fuchs, J.E., & Rousseau, R. (2021). How to calculate the relative intensity of collaboration (RIC) for countries from Web of Science data. ISSI Newsletter, #67, 17(3), 24–29.

5. Fuchs, J.E., Sivertsen, G., & Rousseau, R. (2021). Measuring the relative intensity of collaboration within a network. Scientometrics, 126(10), 8673–8682.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3