Sentence, Phrase, and Triple Annotations to Build a Knowledge Graph of Natural Language Processing Contributions—A Trial Dataset

Author:

D’Souza Jennifer1,Auer Sören1

Affiliation:

1. TIB Leibniz Information Centre for Science and Technology , Hannover , Germany

Abstract

Abstract Purpose This work aims to normalize the NlpContributions scheme (henceforward, NlpContributionGraph) to structure, directly from article sentences, the contributions information in Natural Language Processing (NLP) scholarly articles via a two-stage annotation methodology: 1) pilot stage—to define the scheme (described in prior work); and 2) adjudication stage—to normalize the graphing model (the focus of this paper). Design/methodology/approach We re-annotate, a second time, the contributions-pertinent information across 50 prior-annotated NLP scholarly articles in terms of a data pipeline comprising: contribution-centered sentences, phrases, and triple statements. To this end, specifically, care was taken in the adjudication annotation stage to reduce annotation noise while formulating the guidelines for our proposed novel NLP contributions structuring and graphing scheme. Findings The application of NlpContributionGraph on the 50 articles resulted finally in a dataset of 900 contribution-focused sentences, 4,702 contribution-information-centered phrases, and 2,980 surface-structured triples. The intra-annotation agreement between the first and second stages, in terms of F1-score, was 67.92% for sentences, 41.82% for phrases, and 22.31% for triple statements indicating that with increased granularity of the information, the annotation decision variance is greater. Research limitations NlpContributionGraph has limited scope for structuring scholarly contributions compared with STEM (Science, Technology, Engineering, and Medicine) scholarly knowledge at large. Further, the annotation scheme in this work is designed by only an intra-annotator consensus—a single annotator first annotated the data to propose the initial scheme, following which, the same annotator reannotated the data to normalize the annotations in an adjudication stage. However, the expected goal of this work is to achieve a standardized retrospective model of capturing NLP contributions from scholarly articles. This would entail a larger initiative of enlisting multiple annotators to accommodate different worldviews into a “single” set of structures and relationships as the final scheme. Given that the initial scheme is first proposed and the complexity of the annotation task in the realistic timeframe, our intra-annotation procedure is well-suited. Nevertheless, the model proposed in this work is presently limited since it does not incorporate multiple annotator worldviews. This is planned as future work to produce a robust model. Practical implications We demonstrate NlpContributionGraph data integrated into the Open Research Knowledge Graph (ORKG), a next-generation KG-based digital library with intelligent computations enabled over structured scholarly knowledge, as a viable aid to assist researchers in their day-to-day tasks. Originality/value NlpContributionGraph is a novel scheme to annotate research contributions from NLP articles and integrate them in a knowledge graph, which to the best of our knowledge does not exist in the community. Furthermore, our quantitative evaluations over the two-stage annotation tasks offer insights into task difficulty.

Publisher

Walter de Gruyter GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A BERT-based sequential deep neural architecture to identify contribution statements and extract phrases for triplets from scientific publications;International Journal on Digital Libraries;2024-01-23

2. Designing an educational project with a social impact;2023 IEEE 18th International Conference on Computer Science and Information Technologies (CSIT);2023-10-19

3. Knowledge graph of mobile payment platforms based on deep learning: Risk analysis and policy implications;Expert Systems with Applications;2022-12

4. Extraction and Evaluation of Knowledge Entities from Scientific Documents;Journal of Data and Information Science;2021-08-09

5. Automated Mining of Leaderboards for Empirical AI Research;Lecture Notes in Computer Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3