Augmenting Statistical Data Dissemination by Short Quantified Sentences of Natural Language

Author:

Hudec Miroslav1,Bednárová Erika1,Holzinger Andreas2

Affiliation:

1. Faculty of Economic Informatics , University of Economics in Bratislava , Dolnozemská cesta 1, 852 35 Bratislava , Slovakia .

2. Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation , Medical University Graz , Auenbruggerplatz 2, 8036 Graz , Austria .

Abstract

Abstract Data from National Statistical Institutes is generally considered an important source of credible evidence for a variety of users. Summarization and dissemination via traditional methods is a convenient approach for providing this evidence. However, this is usually comprehensible only for users with a considerable level of statistical literacy. A promising alternative lies in augmenting the summarization linguistically. Less statistically literate users (e.g., domain experts and the general public), as well as disabled people can benefit from such a summarization. This article studies the potential of summaries expressed in short quantified sentences. Summaries including, for example, “most visits from remote countries are of a short duration” can be immediately understood by diverse users. Linguistic summaries are not intended to replace existing dissemination approaches, but can augment them by providing alternatives for the benefit of diverse users of official statistics. Linguistic summarization can be achieved via mathematical formalization of linguistic terms and relative quantifiers by fuzzy sets. To avoid summaries based on outliers or data with low coverage, a quality criterion is applied. The concept based on linguistic summaries is demonstrated on test interfaces, interpreting summaries from real municipal statistical data. The article identifies a number of further research opportunities, and demonstrates ways to explore those.

Publisher

Walter de Gruyter GmbH

Reference60 articles.

1. Adolfsson, C., G. Arvidson, P. Gidlund, A. Norberg, and L. Nordberg. 2010. “Development and Implementation of Selective Data Editing at Statistics Sweden.” In Proceedings of the European Conference on Quality in Official Statistics, May 4, 2010. Helsinki Available at: https://q2010.stat.fi/media//presentations/Norberg_et_all__Statistics_Sweden_slutversion.pdf (accessed April 2017).

2. Almeida, R.J., M-J. Lesot, B. Bouchon-Meunier, U. Kaymak, and G. Moyse. 2013. “Linguistic Summaries of Categorical Time Series Septic Shock Patient Data.” In Proceedings of the 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2013), July 7–10, 2013. 1–8. Hyderabad.

3. Altin, L., M. Tiru, E. Saluveer, and A. Puura. 2015. “Using Passive Mobile Positioning Data in Tourism and Population Statistics.” In Proceedings of the New Techniques and Technologies in Statistics (NTTS 2015), March 10–12, 2015. Brussels. Available at: https://ec.europa.eu/eurostat/cros/system/files/Altin-etal_abstract_ntts_2301LA_0.pdf (accessed January 2017).

4. Arguelles, L. and G. Triviño. 2013. “I-struve: Automatic Linguistic Descriptions of Visual Double Stars.” Engineering Applications of Artificial Intelligence 26: 2083–2092. Doi: http://dx.doi.org/10.1016/j.engappai.2013.05.005.

5. Barcaroli, G., M. Scannapieco, D. Summa, and M. Scarnò. 2015. “Using Internet as a Data Source for Official Statistics: a Comparative Analysis of Web Scraping Technologies.” In Proceedings of the New Techniques and Technologies in Statistics (NTTS 2015), March 10–12, 2015. Brussels. Available at: https://ec.europa.eu/eurostat/cros/system/files/Barcaroli-etal_WebScraping_Final_unblinded.pdf (accessed February 2017).

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model-contrastive explanations through symbolic reasoning;Decision Support Systems;2024-01

2. Conversational Systems and Computational Intelligence, A Critical Analysis;Studies in Computational Intelligence;2024

3. Developing and hosting web data apps in R programming for official statistics;Statistical Journal of the IAOS;2023-05-30

4. Ethical layering in AI-driven polygenic risk scores—New complexities, new challenges;Frontiers in Genetics;2023-01-26

5. Estimating linguistic summaries on the unit interval data;2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE);2022-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3