Statistical Matching as a Supplement to Record Linkage: A Valuable Method to Tackle Nonconsent Bias?

Author:

Gessendorfer Jonathan1,Beste Jonas1,Drechsler Jörg1,Sakshaug Joseph W.1

Affiliation:

1. Institute for Employment Research , Regensburger Str. 100, 90478 Nuremberg , Germany .

Abstract

Abstract Record linkage has become an important tool for increasing research opportunities in the social sciences. Surveys that perform record linkage to administrative records are often required to obtain informed consent from respondents prior to linkage. A major concern is that nonconsent could introduce biases in analyses based on the linked data. One straightforward strategy to overcome the missing data problem created by nonconsent is to match nonconsenters with statistically similar units in the target administrative database. To assess the effectiveness of statistical matching in this context, we use data from two German panel surveys that have been linked to an administrative database of the German Federal Employment Agency. We evaluate the statistical matching procedure under various artificial nonconsent scenarios and show that the method can be effective in reducing nonconsent biases in marginal distributions, but that biases in multivariate estimates can sometimes be worsened. We discuss the implications of these findings for survey practice and elaborate on some of the practical challenges of implementing the statistical matching procedure in the context of linkage nonconsent. The developed simulation design can act as a roadmap for other statistical agencies considering the proposed approach for their data.

Publisher

Walter de Gruyter GmbH

Reference59 articles.

1. Andridge, R.R. and R.J. Little. 2010. “A Review of Hot Deck Imputation for Survey Non-response.” International Statistical Review 78(1): 40–64.

2. Antoni, M., A. Ganzer, and P. vom Berge. 2016. Sample of Integrated Labour Market Biographies (SIAB) 1975–2014. FDZ-Datenreport 4, Institute for Employment Research, Nuremberg, Germany. Avaiable at: http://doku.iab.de/fdz/reporte/2016/DR_04-16_EN.pdf.

3. Antoni, M. and S. Seth. 2011. ALWA-ADIAB – linked individual survey and administrative data for substantive and methodological research. FDZ-Methodenreport 12, Institute for Employment Research, Nuremberg, Germany. Avaiable at: http://doku.iab.de/fdz/reporte/2011/DR_05-11.pdf.

4. Biemer, P.P., R.M. Groves, L.E. Lyberg, N.A. Mathiowetz and S. Sudman. 2011. Measurement Errors in Surveys. John Wiley & Sons.

5. Blossfeld, H.-P., H-G. Roßbach, and J. Von Maurice. 2011. “Education as a Lifelong Process.” Zeitschrift für Erziehungswissenschaft Sonderheft 14. ISBN: 978-3-531-17785-4.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3