Accounting for Complex Sampling in Survey Estimation: A Review of Current Software Tools

Author:

West Brady T.1,Sakshaug Joseph W.2,Aurelien Guy Alain S.3

Affiliation:

1. Survey Research Center , University of Michigan-Ann Arbor , 4118 Institute for Social Research, 426 Thompson Street, Ann Arbor, MI , 48106 , U.S.A.

2. Institute for Employment Research , Regensburger Strasse 104, Nuremberg , 90478 , Germany .

3. Walter R. McDonald & Associates , 12300 Twinbrook Pkwy, Suite 310, Rockville , MD 20852 , U.S.A.

Abstract

Abstract In this article, we review current state-of-the art software enabling statisticians to apply design-based, model-based, and so-called “hybrid” approaches to the analysis of complex sample survey data. We present brief overviews of the similarities and differences between these alternative approaches, and then focus on software tools that are presently available for implementing each approach. We conclude with a summary of directions for future software development in this area.

Publisher

Walter de Gruyter GmbH

Reference165 articles.

1. Agresti, A. and B. A. Coull. 1998. “Approximate Is Better than ‘Exact’ for Interval Estimation of Binomial Proportions.” American Statistician 52: 119–126. Doi: https://doi.org/10.1080/00031305.1998.10480550.10.1080/00031305.1998.10480550

2. Archer, K.J., S. Lemeshow, and D.W. Hosmer. 2007. “Goodness-of-fit Tests for Logistic Regression Models When Data are Collected using a Complex Sampling Design.” Computational Statistics and Data Analysis 51: 4450–4464. Doi: https://doi.org/10.1016/j.csda.2006.07.006.10.1016/j.csda.2006.07.006

3. Asparouhov, T. 2006. “General Multi-level Modeling with Sampling Weights.” Communications in Statistics––Theory and Methods 35: 439–460. Doi: https://doi.org/10.1080/03610920500476598.10.1080/03610920500476598

4. Asparouhov, T. and B. Muthén. 2007. “Testing for Informative Weights and Weights Trimming in Multivariate Modelling with Survey Data.” In Proceedings of the Survey Research Methods Section of the American Statistical Association, 2007, Salt Lake City, Utah, 3394–3399. Available at: https://www.statmodel.com/download/JSM2007000745.pdf (accessed April 14, 2017).

5. Asparouhov, T. and B. Muthén. 2010. “Resampling Methods in Mplus for Complex Survey Data.” Mplus Technical Report, May 4, 2010. Available at: https://www.stat-model.com/download/Resampling_Methods5.pdf (Accessed October 10, 2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3