Neuropathogenesis: rogue glia cause mayhem in the brain

Author:

Antony Joseph

Abstract

AbstractGlia, including astrocytes, microglia and oligodendrocytes, are important components that maintain the architecture of the brain and in many ways contribute to the proper functioning of neurons. Glial cells vastly outnumber neurons in the brain and independently control several crucial brain functions. Impaired glial cells are the cause of several diseases, and pharmacological targeting to repair damaged glia will enable functional recovery in patients suffering from devastating neurological disorders. The interaction between glial cells and some patrolling immune cells in the brain comprise the brain-specific immune system that protects the brain from extraneous agents and repairs injured tissue. While this system can cope with minor insults and infections, when faced with significant challenges such as AIDS dementia, multiple sclerosis, Huntington’s disease, Parkinson’s disease, etc., an effective and balanced immune response that facilitates repair and protection is found wanting. Several debilitating neurological disorders are often associated with dysfunctional glial cells that have limited ability to repair the injured brain and even promote brain damage. In this discussion, specific signaling pathways in glia that are affected in AIDS dementia and periventricular white matter injury will be highlighted.

Publisher

Walter de Gruyter GmbH

Subject

General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Power of CAD/CAM Laser Bioprinting at the Single-Cell Level: Evolution of Printing;3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine;2022

2. Tomentosin Reduces Behavior Deficits and Neuroinflammatory Response in MPTP-Induced Parkinson's Disease in Mice;Journal of Environmental Pathology, Toxicology and Oncology;2021

3. Juglanin ameliorates LPS-induced neuroinflammation in animal models of Parkinson’s disease and cell culture via inactivating TLR4/NF-κB pathway;Biomedicine & Pharmacotherapy;2018-01

4. The Power of CAD/CAM Laser Bioprinting at the Single-Cell Level: Evolution of Printing;3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3