Progesterone Supplementation During the Pre-implantation Period Influences Interferon-Stimulated Gene Expression in Lactating Dairy Cows

Author:

Serrano-Pérez Beatriz12,Rizos Dimitrios3,López-Helguera Irene12,Molina Ester1,Garcia-Ispierto Irina12,López-Gatius Fernando24

Affiliation:

1. Department of Animal Science and University of Lleida , Lleida , Spain

2. Agrotecnio Centre , University of Lleida , Lleida , Spain

3. Department of Animal Reproduction , National Institute for Agriculture and Food Research and Technology (INIA) , Madrid , Spain

4. Transfer in Bovine Reproduction SLu , Barbastro , Spain

Abstract

Abstract This study examined the effect of progesterone (P4) supplementation from Days 16 to 18 post-AI on interferon-stimulated gene (ISG) expression on Day 19 in high-producing dairy cows. Gene expression levels were measured in peripheral blood mononuclear cells. Possible relationships between ISG expression and the incidence of pregnancy failure were also investigated. Cows were alternately assigned on Day 16 post-AI to a control (C: n = 13) or treatment group (P4: n = 14). Out of 27 cows, 12 returned to oestrus before pregnancy diagnosis and 9 were diagnosed as pregnant on Day 28. ISG expression was assessed in all cows. Expression levels for the genes OAS1, ISG15, MX1 and MX2 were higher for pregnant than for non-pregnant cows (P=0.04; P<0.001; P=0.02; P=0.045; respectively). A significant (P=0.01) interaction was observed between the treatment and positive pregnancy diagnosis groups on Day 28 post-AI for the probability of showing ISG expression. This interaction suggests that in cows not pregnant on Day 28, P4 supplementation may have led to increased ISG15 mRNA expression on Day 19. Lower ISG15 expression was detected for cows returning to oestrus than for pregnant cows (P<0.001). However, cows with a negative pregnancy diagnosis showed intermediate values, differences being non-significant when compared to cows returning to oestrus or pregnant cows. Our results suggest that P4 supplementation during the pre-implantation period promotes conceptus signalling.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3