In Vitro Cellulase Production from Five Herbivore Microbial Ecosystems and Consortia

Author:

Fon Fabian Nde1,Nsahlai Ignatius Verla2,Scogings Peter Frank1,Basha Nasreldin Abdelrahim Dafaalla23

Affiliation:

1. Department of Agriculture, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa

2. Animal and Poultry Science, University of KwaZulu-Natal, Pietermaritzburg Campus, Durban Road, Pietermaritzburg, 3201, South Africa

3. Department of Animal Nutrition, Shampat Campus, University of Khartoum, P.O.Box 32, Postal Code 1334, Sudan

Abstract

Abstract As the most abundant biomass in nature, cellulose is the main chemical component in herbivore forages. The energy locked in these complex polymers can only be released by cellulolytic enzymes. Therefore, research aiming to increase the expression of cellulolytic enzymes or browsing uncultured microbial ecosystem in search of potential fibrolytic enzymes is imperative. The main objectives were to: (a) investigate the variation of cellulase enzymes in cow (CW), horse (H), miniature horse (mH), wildebeest (WB) and zebra (ZB); and (b) identify their presence and activeness in microbial consortia, N1 (H+WB), N2 (H+ZB), N3 (WB+ZB) and N4 (H+WB+ZB). Fresh faecal or rumen inocula were cultured in the laboratory on maize stover and lucerne (1:1) with salivary buffer for 72 h at 38°C. Crude proteins (CPZ) were precipitated from both fresh and cultured inocula using 60% ammonium sulfate for enzyme assays and zymography. Endocellulases and their activity were identified on 1% (m/v) carboxymethyl cellulose (CMC) zymograms stained with Congo red. All CPZ extracts were active as reducing sugars were produced after incubation with crystalline cellulose, CMC and xylan. The number and types of proteins with endocellulase activity varied (P<0.05) among and within the different animal species CW (15), H (14), mH (14), WB (13) and ZB (13). Microbial consortia were active with relatively higher number of endocellulases, N1 (17), N3 (14), N4 (14), and N2 (13). Cellulase enzymes vary among and within herbivore species grazing on the same or different fields. Therefore, identifying specific enzymes and microbes with higher fibrolytic potentials from different ecosystems for transinoculation could play a vital role in improving forage digestibility in ruminants

Publisher

Walter de Gruyter GmbH

Subject

Animal Science and Zoology,Food Animals,Small Animals

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3