Characterization of the SSAT1 gene and its expression profiling in various tissues and follicles in geese

Author:

Jiang Dongmei12,Chen Ziyu1,Yi Zhixin1,Kang Bo12

Affiliation:

1. College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, People’s Republic of China

2. Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, People’s Republic of China

Abstract

Abstract Spermidine/spermine N1-acetyltransferase (SSAT ) is a catabolic regulator of polyamines, ubiquitous molecules essential for cell proliferation and differentiation. In this study, the molecular characterization of the SSAT1 gene of the Sichuan white goose was analyzed, as well as its expression profiles in various follicles and tissues. The open reading frame of the SSAT1 cDNA (GenBank No. KM925008) is 516 bp in length and encodes a 171-amino acid protein with a putative molecular weight of 20 kDa. The predicted SSAT1 protein is highly conserved with those of other species, especially Gallus gallus. SSAT1 mRNA was ubiquitously expressed in all the examined tissues. The highest level of SSAT1 mRNA expression was found in the pineal gland (P<0.05), and was 12-fold greater than in the heart. The level of SSAT1 mRNA expression was relatively lower in preovulatory follicles, while it was higher in postovulatory follicles (POFs), particularly in POF1. Furthermore, as postovulatory follicles degenerated, SSAT1 expression gradually decreased. Our findings suggest that SSAT1 might play important roles in mediating the physiological function of the pineal gland and regulating the regression of POFs.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polyamines in Ovarian Aging and Disease;International Journal of Molecular Sciences;2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3