The influence of nano-SiO2 emulsion on sulfate resistance of cement-based grouts

Author:

Li Shuiping1,Yuan Bin1,Cheng Jian,Yu Xiaocheng1,Wei Chao1,Wu Qisheng2,Zhang Youchao1

Affiliation:

1. College of Architectural Science and Engineering, Yangzhou University , Yangzhou , , P. R. China

2. School of Materials Science and Engineering, Yancheng Institute of Technology , Yancheng , , P. R.China

Abstract

Abstract Sulfate attack is one of the most significant durability issues for cement-based grouts, which are widely used to repair concrete structures in sulfate-rich environments. The purpose of this study was to investigate the impact of nano-SiO2 emulsion on the sulfate resistance of cement-based grouts. The durability of the mixes was evaluated on the basis of weight loss and compressive strength. X-ray diffraction (XRD) and scanning electron microscopy (SEM) of hardened grout matrix were used to analyze the hydration products and microstructure of the hardened grout matrix. The results indicate that the hydration degree of nano-SiO2-modified samples is higher than that of the control sample. The compressive strength from highest to lowest was 16 NSE, 10 NSE, NSP, and the control sample. The XRD and SEM results suggest that the deterioration of properties may be attributed to the formation and growth of ettringite (AFt) crystals, which may result in crack generation and extension and in the corrosion of gypsum, leading to exfoliation. The addition of nano-SiO2 to cement-based grouts through a preprepared emulsion, which facilitates dispersion within the cement matrix, has the potential to reduce AFt and gypsum contents, enhance microstructure density, decrease the migration channels of SO 4 2 \[\text{SO}_{4}^{2-}\] , and ultimately improve the resistance to sulfate attack. This work will provide a novel route to enhance the sulfate resistance of cement-based grouts, which may be serviced in a sulfate-rich environment.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3