Affiliation:
1. School of light Industry, Harbin University of commerce , Harbin , Heilongjiang , China
2. Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences , Chennai , Tamilnadu , India
Abstract
Abstract
In this work, NiO–ZnOnanocomposite (NC)was prepared through a facile, low-temperature,sol–gel route. Zinc acetate dihydrate, nickel chloride hexahydrate, cetyltrimethyl ammonium bromide (CTAB), and citric acid were used in the synthesis of the material. Then, the sample was kept in the muffle furnace at a temperature of 600°C for 2 h. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV–Visible spectroscopy, and photocatalytic and antifungal investigations were used to characterize the synthesized nanocrystallites. The XRD data showedthe polycrystalline hexagonal ZnO nanoparticles and cubic NiO crystallites. FTIR studies confirmed the presence of Zn-O and Ni-O bonds in the sample. The FESEM analysis showed the morphology of nanocrystallitescharacterized by their homogeneous shape and size. The absorbance curves from the UV–Visible spectroscopy investigation revealed the bandgap of 3.17 eV. The research findings demonstrate that the NiO–ZnO NC possesses the significant level of selected microbial pathogens. Industrial dyesmake water unhealthy for drinking. Among these dyes, methylene blue (MB) is toxic, carcinogenic, and non-biodegradable, and causes a severe threat to human health and environmental safety. Hence, it is necessary to develop efficient and environmentally friendly technology to remove MB from wastewater. The ZnO–NiO NC degraded the MB dye pollutant under visible irradiation (125 W), according to photocatalytic tests. After 120 min of exposure, the photocatalytic investigations demonstrated 75% degradation efficiency.