Mechanical properties and quantum mechanical simulations of natural rubber composites with cerium complexes under aging conditions

Author:

Li Yilin123,Liu Yonggang123,Hao Wei123,Liu Zhaogang123,Zhang Wentao123,Hu Yanhong123,Wu Jinxiu123

Affiliation:

1. Inner Mongolia University of Science and Technology, Rare Earth Engineering Technology Institute , Baotou China

2. Ministry of Education Key Laboratory for Green Extraction and Efficient Use of Light Rare Earth Resources , Baotou China

3. Baotou Key Laboratory for Rare Earth Hydrometallurgy and Light Rare Earth Applications, Inner Mongolia Autonomous Region , Baotou China

Abstract

Abstract Enhancing the service life of natural rubber (NR) products, including antioxidants, is crucial to prevent rubber degradation and enhance its oxidation resistance. Phenolic antioxidant 2246 and cerium complex of p-amino salicylic acid (PAS-Ce) are utilized as NR antioxidants. Numerous studies have qualitatively analyzed the antioxidant mechanisms of these compounds. Building upon this perspective, this study quantitatively assessed the protective mechanisms of these antioxidants by combining experimental data with molecular simulations. Additionally, it compared their impacts on the thermal oxidative aging performance of NR. The findings revealed that the PAS-Ce/NR system exhibited the highest mechanical performance retention following multiple days of thermal-oxidative aging. Analyzing the PAS-Ce/NR system through ATR-FTIR and DTA techniques demonstrated that it had the lowest C=O content after thermal-oxidative aging. Furthermore, calculating the activation energy required for thermal-oxidative aging decomposition using the Kissinger and FWO methods indicated that PAS-Ce/NR had the highest activation energy, suggesting superior inhibitory effects against thermal-oxidative aging. Quantum mechanical simulations also illustrated that the dissociation energy of the O-H bond in antioxidants 2246 and PAS-Ce was lower than that of the C-H bond in NR. However, PAS-Ce exhibited a quicker capture of radical species, effectively delaying the oxidation reaction rate of NR molecular chains and thus more efficiently inhibiting the aging process. These insights contribute significantly to comprehending the antioxidative mechanisms in NR aging.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3