Investigation of Functional Dependency between the Characteristics of the Machining Process and Flatness Error Measured on a CMM

Author:

Štrbac Branko1,Rodić Dragan1,Delić Milan2,Savković Borislav1,Hadžistević Miodrag1

Affiliation:

1. Department of Production Engineering, Faculty of Technical Sciences , University of Novi Sad , Trg Dositeja Obradovića, 6., 21000 , Novi Sad , Serbia

2. Department of Industrial Engineering and Management, Faculty of Technical Sciences , University of Novi Sad , Trg Dositeja Obradovića, 6., 21000 , Novi Sad , Serbia

Abstract

Abstract Numerous studies have shown that the choice of measurement strategy (number and position of measurement points) when measuring form error on a coordinate-measuring machine (CMM) depends on the characteristics of the machining process which was used to machine the examined surface. The accuracy of form error assessment is the primary goal of verification procedures and accuracy is considered perfect only in the case of the ideal verification operator. Since the ideal verification operator in the “point-by-point” measuring mode is almost never used in practice, the aim of this study was to examine a relationship which had not been examined in earlier studies, namely how the machining process, surface roughness and a reduced number of points in the measurement strategy affect the accuracy of flatness error assessment. The research included four most common cutting processes applied to flat surfaces divided into nine different classes of roughness. In order to determine functional dependency between the observed input variables and the output, statistical regression models and neuro-fuzzy logic (artificial intelligence tool) were used. The analyses confirmed the significance of all three input parameters, with surface roughness being the most significant one. Both the statistical regression models and neuro-fuzzy models proved to be adequate, matching the experimental results. The use of these models makes it possible to determine flatness error measured on a CMM if input variables considered in the paper are known.

Publisher

Walter de Gruyter GmbH

Subject

Instrumentation,Biomedical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3