A Novel Three-stage Feature Fusion Methodology and its Application in Degradation State Identification for Hydraulic Pumps

Author:

Pei Mochao1,Li Hongru1,Yu He1

Affiliation:

1. Army Engineering University , Shijiazhuang , China

Abstract

Abstract The performance of feature is essential to the degradation state identification for hydraulic pumps. The initial feature set extracted from the vibration signal of the hydraulic pump is often high-dimensional and contains redundant information, which undermines the effectiveness of the feature set. The novel three-stage feature fusion scheme proposed in this paper aims to enhance the performance of the original features extracted from the vibration signal. First, sparse local Fisher discriminant analysis (SLFDA) performs intra-set fusion within the two original feature sets, respectively. SLFDA has a good effect on samples with intra-class multimodality, and the feature set fused by it has obvious multivariate normal distribution characteristics, which is conducive to the next fusion. Second, our modified intra-class correlation analysis (MICA) is used to fuse two feature sets in the second stage. MICA is a CCA (Canonical correlation analysis) -based method. A new class matrix is used to modify the covariance matrix between two feature sets, which allows MICA to conveniently inherit the discriminating structure while fusing features. Finally, we propose a feature selection algorithm based on kernel local Fisher discriminant analysis (KLFDA) and kernel canonical correlation analysis (KCCA) to select the desired features. This algorithm based on Max-Relevance and Min-Redundancy (mRMR) framework solves the problem that CCA cannot properly evaluate the correlation between features and the class variable, as well as accurately evaluates the correlation among features. Based on the experimental data, the proposed method is compared with several popular methods, and the feature fusion methods used in some previous studies related to the fault diagnosis of rotating machinery are compared with it as well. The results show that the fusion effectiveness of our method is better than other methods, which obtains higher recognition accuracy.

Publisher

Walter de Gruyter GmbH

Subject

Instrumentation,Biomedical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3