Digital Base Band Converter As Radar Vlbi Backend / Dbbc Kā Ciparošanas Sistēma Radara Vlbi Novērojumiem

Author:

Tuccari G.,Bezrukovs Vl.,Nechaeva M.

Abstract

Abstract A digital base band converter (DBBC) system has been developed by the Istituto di Radioastronomia (Noto, Italy) for increasing the sensitivity of European VLBI Network (EVN) by expanding the full observed bandwidth using numerical methods. The output data rate of this VLBI-backend is raised from 1 to 4 Gbps for each radiotelescope. All operations related to the signal processing (frequency translation, amplification, frequency generation with local oscillators, etc.) are transferred to the digital domain, which allows - in addition to well-known advantages coming from digital technologies - achieving better repeatability, precision, simplicity, etc. The maximum input band of DBBC system is 3.5 GHz, and the instantaneous bandwidth is up to 1 GHz for each radio frequency/intermediate frequency (RF/IF) out of the eight possible. This backend is a highly powerful platform for other radioastronomy applications, and a number of additional so-called personalities have been developed and used. This includes PFB (polyphase filter bank) receivers and Spectra for high resolution spectroscopy. An additional new development with the same aim - to use the DBBC system as a multi-purpose backend - is related to the bi-static radar observations including Radar VLBI. In such observations it is possible to study the population of space debris, with detection of even centimetre class fragments. A powerful transmitter is used to illuminate the sky region to be analyzed, and the echoes coming from known or unknown objects are reflected to one or more groundbased telescopes thus producing a single-dish or interferometric detection. The DBBC Radar VLBI personality is able to realize a high-resolution spectrum analysis, maintaining in the central area the echo signal at the expected frequency including the Doppler shift of frequency. For extremely weak signals a very large integration time is needed, so for this personality different input parameters are provided. The realtime information can then allow exploring easily the desired range of search for unknown or not fully determined orbit objects. These features make Radar VLBI personality most useful in the space debris measurements.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3