An Integrated View: Neuroadipocrinology of Diabesity

Author:

Chaldakov George N.1,Fiore Marco2,Ranćić Gorana2,Beltowski Jerzy3,Tunçel Neşe4,Aloe Luigi5

Affiliation:

1. Laboratory of Cell Biology, Department of Anatomy and Histology, Medical University, Varna, Bulgaria

2. Department of Histology and Embryology, University Medical Faculty, Niš, Serbia

3. Department of Pathophysiology, Medical University, Lublin, Poland

4. Department of Physiology, Medical Faculty, Eskişehir Osmangazi University, Eskişehir, Turkey

5. Institute of Cellular Biology and Neurobiology, National Research Council (CNR), Rome, Italy,

Abstract

ABSTRACT Today’s achievements in systems biology and -omics sciences have facilitated a shift from studying individual molecules and tissues to characterising molecules and cells holistically. In this article, we attempt to discuss the status of a much-needed coherent view that integrates studies on neurobiology and adipobiology, as well as those on diabetes and obesity. Globally, cardiometabolic diseases (atherosclerosis, hypertension, type 2 diabetes mellitus, obesity, diabesity, and metabolic syndrome) are the most prevalent pathologies. In 2000, Astrup and Finer (Obes Rev 1: 57-59) wrote the following: “Since type 2 diabetes is obesity dependent, and obesity is the main aetiogical cause of type 2 diabetes, we propose the term ‘diabesity’ should be adopted.” Arguably, the research field of adipobiology has witnessed three major paradigm shifts since the discovery of leptin, an adipose-derived hormone, in 1994. Various neuroendocrine and neurotrophic factors are included in the growing list of endocrine and paracrine adipose-secreted signaling proteins collectively designated adipokines. These findings open a novel field of research known as neuroadipocrinology, a component of neuroendocrinology. Adipokines, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), mediate multiple biological processes, such as food intake, immunity, inflammation, memory, mood, and metabolism. The effects on metabolism involve the maintenance of glucose, lipid and energy homeostasis as well as cardioprotection, neuroprotection, and aging. In this article, we highlight the role of metabotrophic factors (MTF) and the adipose- and nonadipose-derived biomolecules that mediate these effects. Recent results demonstrate that circulating and tissue levels of certain MTFs, e.g., adiponectin, NGF, BDNF, glucagon-like protein-1, sirtuin-1, interleukin- 10, and aquaporin-7, are altered in cardiometabolic diseases, including diabesity. Overall, this may cultivate a novel thinking for diabesity, herein also referred to as Homo diabesus.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3