Multibody Dynamics Model of the Cycloidal Gearbox, Implemented in Fortran for Analysis of Dynamic Parameters Influenced by the Backlash as a Design Tolerance

Author:

Król Roman1ORCID,Król Kazimierz1ORCID

Affiliation:

1. 1 Faculty of Mechanical Engineering, Department of Applied Mechanics and Mechatronics , University of Technology and Humanities in Radom , ul. Stasieckiego 54, 26-600 Radom , Poland

Abstract

AbstractIn this study, dynamical parameters of the cycloidal gearbox working at the constant angular velocity of the input shaft were investigated in the multibody dynamics 2D model implemented in the Fortran programming language. Time courses of input and output torques and forces acting on the internal and external sleeves have been shown as a function of the contact modelling parameters and backlash. The analysis results in the model implemented in Fortran were compared with the results in the 3D model designed using MSC Adams software. The values of contact forces are similar in both models. However, in the time courses obtained in MSC Adams there are numerical singularities in the form of peaks reaching 500 N for the forces at external sleeves and 400 N for the forces acting at internal sleeves, whereas in the Fortran model, there are fewer singularities and the maximum values of contact forces at internal and external sleeves do not exceed 200 N. The contact damping and discretisation level (the number of discrete contact points on the cycloidal wheels) significantly affect the accuracy of the results. The accuracy of computations improves when contact damping and discretisation are high. The disadvantage of the high discretization is the extended analysis time. High backlash values lead to a rise in contact forces and a decrease in the force acting time. The model implemented in Fortran gives a fast solution and performs well in the gearbox optimisation process. A reduction of cycloidal wheel discretisation to 600 points, which still allows satisfactory analysis, could reduce the solution time to 4 min, corresponding to an analysis time of 0.6 s with an angular velocity of the input shaft of 52.34 rad/s (500 RPM).

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3