The Effect of “B” Target Voltage on Wear Properties of TiCrNb-hBN Coatings

Author:

Sert Yaşar1ORCID,Küçükömeroğlu Tevfik1ORCID,Ghahramanzadeh Asl Hojjat1ORCID,Kara Levent2ORCID

Affiliation:

1. 1 Engineering Faculty, Mechanical Engineering Department , Karadeniz Technical University , , Trabzon , Turkey

2. 2 Engineering Faculty, Mechanical Engineering Department , Erzincan Binali Yıldırım University , Erzincan , Turkey

Abstract

Abstract The present study aims to determine the effect of target voltage of boron on elevated temperature wear behaviour of newly designed (Ti, Cr, Nb)-hBN PVD coatings. For this purpose, this layer is grown on the AISI L6 (55NiCrMoV7) at various target voltages (600 V, 700 V) using a high-power impulse magnetron sputtering setup. The coating layer has a graded design and has been coated on the substrate surface in adherence with the following order: Cr – CrN – TiCrN – TiCrNbN and finally TiCrNb-hBN (constituting the working layer). The surface properties of the layer were determined using SEM and an optical profilometer. It is seen that the coatings were deposited on the surface in a granular structure pattern away from the deposition defect (such as a droplet or hole), and the roughness values increase as the target voltage increases. Phase analysis is determined using XRD, and average grain size calculations are performed using the XRD data. The coating layer has grown on the surface at TiN (112), CrN (311), NbN (111) and h-BN (001) orientations. Then, mechanical tests including microhardness and scratch tests were conducted on the specimens. Although the layer that is produced with both different parameters improves the hardness of the substrate (4.7 GPa), the hardness of the coating layer at the voltage of 700 V (24.67 GPa) is higher than that of others. Based on scratch tests, scratch crack propagation resistance (CPR) values were determined as 40 N2 and 1,650 N2 for coatings produced at 600 V and 700 V, respectively. The wear behaviours of specimens are specified using a ball-on-disc type tribometer at 450°C. It is seen that the coating with high hardness and scratch resistance offers unique contributions to the wear performance of the substrate. The optimum value of the target voltage to be used in the production of this innovative coating has been introduced into the literature.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3