Experimental Investigation of a Uniaxial Dielectric Elastomer Generator

Author:

Sikora Wojciech1ORCID

Affiliation:

1. 1 Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Maintenance , AGH University of Krakow , al. Mickiewicza 30, 30-059 Kraków , Poland

Abstract

Abstract The widespread use of battery-powered electronic devices creates the need to develop methods to extend their maximum operating time. This can be achieved by using ambient energy, which would otherwise be dissipated. The conversion of energy, usually mechanical energy, into electric energy takes place in energy harvesters. Energy harvester systems based on a dielectric elastomer (DE) are a relatively new field that is being constantly developed. Due to their features, dielectric elastomer generators (DEGs) may complement the currently dominant piezoelectric harvesters. The major feature of employing a hyperelastic material is that it allows relatively large displacements to be utilised for generating energy, which is impossible in the case of piezoceramics. This article presents a DEG designed to operate under uniaxial tensile loads and which has a multilayer structure, describes the general operating principles of a DEG, explains the construction and assembly process of the investigated design and shows the electric circuit necessary to properly direct current flow during the DEG operation. The experimental part consists of two series of tests based on a central composite design (CCD). The objective of the first part was to map a capacitance response surface of the DEG in the selected range of the cyclic mechanical load. The second part concerned the amount of generated energy for the specific load case as a function of operating voltages. The result of the work is the formulation of regression models that allow the characteristics of the presented DEG design to be identified.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3