Ability of Black-Box Optimisation to Efficiently Perform Simulation Studies in Power Engineering

Author:

Peters Lukas1ORCID,Kutzner Rüdiger1ORCID,Schäfer Marc2ORCID,Hofmann Lutz3ORCID

Affiliation:

1. 1 University of Applied Sciences and Arts Hannover , Faculty I – Electrical Engineering and Information Technology , Ricklinger Stadtweg 120, 30459 Hannover , Germany

2. 2 Siemens Energy Gas and Power Combustion Systems , Mellinghofer Str. 55, 45473 Mülheim a.d. Ruhr , Germany

3. 3 Leibniz University Hannover , Institute of Electric Power Systems, Electric Power Engineering Section , Appelstraße 9a, 30167 Hannover , Germany

Abstract

Abstract In this study, the potential of the so-called black-box optimisation (BBO) to increase the efficiency of simulation studies in power engineering is evaluated. Three algorithms (“Multilevel Coordinate Search” (MCS) and “Stable Noisy Optimization by Branch and Fit” (SNOBFIT) by Huyer and Neumaier and “blackbox: A Procedure for Parallel Optimization of Expensive Black-box Functions” (blackbox) by Knysh and Korkolis) are implemented in MATLAB and compared for solving two use cases: the analysis of the maximum rotational speed of a gas turbine after a load rejection and the identification of transfer function parameters by measurements. The first use case has a high computational cost, whereas the second use case is computationally cheap. For each run of the algorithms, the accuracy of the found solution and the number of simulations or function evaluations needed to determine the optimum and the overall runtime are used to identify the potential of the algorithms in comparison to currently used methods. All methods provide solutions for potential optima that are at least 99.8% accurate compared to the reference methods. The number of evaluations of the objective functions differs significantly but cannot be directly compared as only the SNOBFIT algorithm does stop when the found solution does not improve further, whereas the other algorithms use a predefined number of function evaluations. Therefore, SNOBFIT has the shortest runtime for both examples. For computationally expensive simulations, it is shown that parallelisation of the function evaluations (SNOBFIT and blackbox) and quantisation of the input variables (SNOBFIT) are essential for the algorithmic performance. For the gas turbine overspeed analysis, only SNOBFIT can compete with the reference procedure concerning the runtime. Further studies will have to investigate whether the quantisation of input variables can be applied to other algorithms and whether the BBO algorithms can outperform the reference methods for problems with a higher dimensionality.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Identification and Tuning of Gas Turbine Models Using Black-Box Optimization;2023 IEEE 6th International Conference and Workshop Óbuda on Electrical and Power Engineering (CANDO-EPE);2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3