Affiliation:
1. Department of Mathematics , Federal University of Technology , 1526, PMB,Owerri , Ihiagwa , Nigeria
2. Abdus Salam School of Mathematical Sciences , Government College University Katchery Road, Lahore 54000 , Lahore Pakistan
Abstract
Abstract
In this work, a coupled system of time-fractional modified Burgers’ equations is considered. Three different fractional operators: Caputo, Caputo-Fabrizio and Atangana-Baleanu operators are implemented for the equations. Also, two different scenarios are examined for each fractional operator: when the initial conditions are u(x, y, 0) = sin(xy), v(x, y, 0) = sin(xy), and when they are u(x, y, 0) = e{−kxy}, v(x, y, 0) = e{−kxy}, where k, α are some positive constants. With the aid of computable Adomian polynomials, the solutions are obtained using Laplace Adomian decomposition method (LADM). The method does not need linearization, weak nonlinearity assumptions or perturbation theory. Simulations are also presented to support theoretical results, and the behaviour of the solutions under the three different fractional operators compared.
Subject
Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献