Post−surge geometry and thermal structure of Hørbyebreen, central Spitsbergen

Author:

Małecki Jakub,Faucherre Samuel,Strzelecki Mateusz C.

Abstract

Abstract Hørbyebreen surged in the 19th or early 20th century, as suggested by geomorphological evidences and looped medial moraines. In this study, we investigate its wide−spread geometry changes and geodetic mass balance with 1960 contour lines, 1990 and 2009 digital elevation models, in order to define the present−day state of the glacier. We also study its thermal structure from ground−penetrating radar data. Little is known about the glacier behaviour in the first part of the 20th century, but from its surge maximum until 1960 it has been retreating and losing its area. In the period 1960-1990, fast frontal thinning (2-3ma−1) and a slow mass build−up in the higher zones (~0.15 m a−1) have been noted, resulting in generally negative mass balance (−0.40 ± 0.07 m w. eq. a−1). In the last studied period 1990-2009, the glacier showed an acceleration of mass loss (−0.64 m ± 0.07 w. eq. a−1) and no build−up was observed anymore. We conclude that Hørbyebreen system under present climate will not surge anymore and relate this behaviour to a considerable increase in summer temperature on Svalbard after 1990. Radar soundings indicate that the studied glacial system is polythermal, with temperate ice below 100-130 m depth. It has therefore not (or not yet) switched to cold−bedded, as has been suggested in previous works for some small Svalbard surge−type glaciers in a negative mass balance mode.

Publisher

Walter de Gruyter GmbH

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference112 articles.

1. Observations : changes in snow ice and frozen ground In eds Climate Change The Physical Science Basis Contribution of Working Group I to theFourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press;LEMKE,2007

2. The thermal regime of sub polar glaciers mapped by multi frequency radio echo sounding of;BJÖRNSSON;Journal Glaciology,1996

3. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry of;MOHOLDT;Remote Sensing Environment,2010

4. How do glaciers surge of;RAYMOND;review Journal Geophysical Research,1987

5. Thermal structure and drainage system of a small valley glacier investigated by ground penetrating radar The;BÆLUM,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3