Seismic and density structure of the lithosphere−asthenosphere system along transect Knipovich Ridge−Spitsbergen−Barents Sea – geological and petrophysical implications

Author:

Krysiński Lech,Grad Marek,Mjelde Rolf,Czuba Wojciech,Guterch Aleksander

Abstract

AbstractThis paper presents a study of the seismic P−wave velocity and density structure of the lithosphere−asthenosphere system along a 800 km long transect extending from the actively spreading Knipovich Ridge, across southern Spitsbergen to the Kong Karls Land Volcanic Province. The 2D seismic and density model documents 6-8 km thick oceanic crust formed at the Knipovich Ridge, a distinct continent−ocean−boundary (COB), the east− ern boundary of the dominantly sheared Hornsund Fault Zone, and the eastern boundary of the Early Cenozoic West Spitsbergen Fold−and−Thrust Belt. The crustal continent−ocean transitional zone has significant excess of density (more than 0.1 g/cm3in average), charac− teristic for mafic/ultramafic and high−grade metamorphic rocks. The main Caledonian su− ture zone between Laurentia and Barentsia is interpreted based on variations in crustal thickness, velocities and densities. A high velocity body in the lower crust is preferably in− terpreted in terms of Early Cretaceous magmatism channelled from an Arctic source south− wards along the proto−Hornsund zone of weakness. The continental upper mantle expresses high velocities (8.24 km/s) and densities (3.2 g/cm3), which may be interpreted in terms of low heat−flow and composition dominated by dunites. The lower velocities (7.85 km/s) and densities (3.1 g/cm3) observed in the oceanic lithosphere suggest composition dominated by primitive peridotites. The model of mantle allows for successful direct description of subcrustal masses distribution compensating isostatically uneven crustal load. The esti− mated low value of correlation between density and velocity in the mantle 0.12 kg·s·m−4suggests that horizontal density differences between oceanic and continental mantle would be dominated by compositional changes.

Publisher

Walter de Gruyter GmbH

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference128 articles.

1. From pull apart basins to ultraslow spreading : Results from the western Barents Sea Margin;LIBAK;Tectonophysics,2012

2. andMOONEY Seismic wave velocities - density relation in the upperman tle of the Western Geophysical Research AbstractsVol ID gra;ROMANYUK;USA,2007

3. Application of integrated geophysical modeling for determination of the continental lithospheric thermal structure in the Eastern Carpathians;DÉREROVÁ;Tectonics,2006

4. The continental margin of the Norwegian Sea Recent and outstanding problems Transactions of the of London Series;SUNDVOR;Royal Society,1980

5. Deep seismic transects across the sheared western Barents Sea - Svalbard continentalmargin;FALEIDE;Tectonophysics,1991

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3