On Proinov’s Lower Bound for the Diaphony

Author:

Kirk Nathan1

Affiliation:

1. Mathematical Sciences Research Centre, School of Mathematics and Physics , Queen’s University Belfast , Belfast, Northern Ireland, United Kingdom

Abstract

Abstract In 1986, Proinov published an explicit lower bound for the diaphony of finite and infinite sequences of points contained in the d−dimensional unit cube [Proinov, P. D.:On irregularities of distribution, C. R. Acad. Bulgare Sci. 39 (1986), no. 9, 31–34]. However, his widely cited paper does not contain the proof of this result but simply states that this will appear elsewhere. To the best of our knowledge, this proof was so far only available in a monograph of Proinov written in Bulgarian [Proinov, P. D.: Quantitative Theory of Uniform Distribution and Integral Approximation, University of Plovdiv, Bulgaria (2000)]. The first contribution of our paper is to give a self contained version of Proinov’s proof in English. Along the way, we improve the explicit asymptotic constants implementing recent, and corrected results of [Hinrichs, A.—Markhasin, L.: On lower bounds for the2 -discrepancy, J. Complexity 27 (2011), 127–132.] and [Hinrichs, A.—Larcher, G.: An improved lower bound for the2 -discrepancy, J. Complexity 34 (2016), 68–77]. (The corrections are due to a note in [Hinrichs, A.—Larcher, G. An improved lower bound for the2 -discrepancy, J. Complexity 34 (2016), 68–77].) Finally, as a main result, we use the method of Proinov to derive an explicit lower bound for the dyadic diaphony of finite and infinite sequences in a similar fashion.

Publisher

Walter de Gruyter GmbH

Reference26 articles.

1. [1] BILYK, D.: On Roth’s orthogonal function method in discrepancy theory, Unif. Distrib. Theory 6 (2011), no. 1, 143–184.

2. [2] CRISTEA, L. L.—PILLICHSHAMMER, F.: A lower bound for the b−adic diaphony, Rend. Mat. Appl. Ser. VII 27 (2007), 147-153.

3. [3] DICK, J.—PILLICHSHAMMER, F.: Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, Cambridge, 2010.10.1017/CBO9780511761188

4. [4] DICK, J.—PILLICHSHAMMER, F.: Explicit constructions of point sets and sequences with low discrepancy, (P. Kritzer, ed. et al.), In: Uniform Distribution and Quasi-Monte Carlo Methods. Discrepancy, Integration and Applications. Radon Ser. Comput. Appl. Math. Vol. 15, De Gruyter, Berlin 2014, pp. 63–86.10.1515/9783110317930.63

5. [5] ERDŐS, P.—TURÁN, P.: On a problem in the theory of uniform distribution, Indag. Math. 10 (1948), 370–378.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3